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LINEAR STABILITY OF SWIRLING FLOWS COMPUTED AS 

OF MOTION 
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SUMMARY 

The linear stability of numerical solutions to the quasi-cylindrical equations of motion for swirling flows is 
investigated. Initial conditions are derived from Batchelor’s similarity solution for a trailing line vortex. The 
stability calculations are performed using a second-order-accurate finite-difference scheme 011 a staggered 
grid, with the accuracy of the computed eigenvalues enhanced through Richardson extrapolation. The 
streamwise development of both viscous and inviscid instability modes is presented. The possible relation- 
ship to vortex breakdown is discussed. 
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1. INTRODUCTION 

Over the past 30 years, considerable effort has been expended toward an understanding of the 
mechanisms inherent in the development and evolution of longitudinal vortices. This has been 
motivated, in part, by the desire to control and/or disable these vortices in applications such as 
the aircraft-wake-vortex hazard and submarine non-acoustic stealth. Methods which have been 
suggested to reduce the intensity of these vortices, and have received considerable attention are: 
(1) to excite vortex instabilities, and (2) to promote vortex bursting or breakdown. 

The present paper addresses primarily the first mechanism; that is, viscous and inviscid 
instability of a prototype trailing line vortex. Previous viscous stability calculations of the 
‘q-vortex’ (derived from the far-wake solution for a trailing line vortex’ have been performed by 
Lessen and Paillet,2 Stewartson3 and K h ~ r r a r n i . ~  Several other researchers have investigated the 
inviscid stability of these profiles (cf. References 5-9). Results show that the stability of the vortex 
is strongly dependent on the value of q (related to the ratio of the maximum swirl velocity to the 
maximum axial velocity). The vortex is completely stabilized for values of q > 1.5, with the most 
unstable wave obtained in the limit Inl+oo (where n is the azimuthal wavenumber). Certain 
restrictions are inherent when employing Batchelor’s solution for stability calculations. 
Batchelor’s solution depends on a partial linearization of the quasi-cylindrical equations of 
motion. Requirements for this linearization are: (1) the circumferential velocity is small compared 
to the free-stream axial velocity; and (2) the axial velocity within the vortex core is nearly equal to 
the free-stream velocity. Hall” provides comparisons between the similarity solutions and the 
numerical solutions to the quasi-cylindrical equations of motion at swirl ratios comparable to 
those considered in this paper. His conclusion was that, as the vortex evolves in space, Batchelor’s 
solution provides a poor fit to the numerically determined axial velocity profile and a good fit to 
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the circumferential velocity profile (although, even here, differing somewhat t the  only contribu- 
tion to this discrepancy being the linearization process. 

The q-vortex has also been fit to vortices formed within tube-and-vane type apparatus-often 
as a means of studying vortex breakdown. Experiments reveal that profiles slightly upstream of 
breakdown have values of q > 1.5, which indicates that these vortices are stable to both symmetric 
and asymmetric inviscid disturbances (cf. References 11 and 12). It is known that numerical 
solutions of quasi-cylindrical equations fail under certain conditions; that is, when the ratio of the 
maximum swirl velocity to axial velocity exceeds (approximately) unity (cf. Reference 13). It has 
then been proposed that this point may correspond to the approximate location of the onset of 
vortex breakdown. It is of interest to investigate the stability of profiles of this type. This may shed 
additional light on the possible role of flowfield instabilities in determining the resultant form of 
vortex breakdown. Of course, the symmetry assumption prevents one from correlating the form 
of an impending breakdown. To overcome such restrictions, solutions to the fully three-dimen- 
sional Navier-Stokes equations for vortex breakdown (cf. Reference 14) need be investig- 
ated-certainly a more difficult task. 

The stability calculations are performed using a normal mode analysis. Although, strictly 
speaking, a non-parallel stability theory is appropriate (multiple scales” or parabolized stability 
equation approachI6), the quasi-parallel flow assumption is made. The quasi-parallel assumption 
is justified on the grounds that the vortex is embedded in a zero pressure gradient flow and that 
velocity changes along the vortex axis (upstream from any impending breakdown), due only to 
viscous forces, are small. At high Reynolds numbers, significant changes occur over many 
wavelengths. Of course, for a swirling flow the pressure is not constant across the core, but varies 
according to the square of the circulation. Thus, an adverse pressure gradient may exist along the 
axis for a vortex embedded in a zero pressure gradient free stream. It is also noted that the 
quasi-parallel assumption has proven invaluable in providing an insight into the stability of 
laminar boundary layers. Provisions are made to include some non-parallel effects by retaining 
radial velocity and streamwise derivative terms in the mean flow (absent in studies of the 
q-vortex). The stability formulation is based on second-order-accurate finite-difference approx- 
imations on a staggered grid, with the accuracy of the computed eigenvalues being improved 
through Richardson extrapolation. 

2. PROBLEM FORMULATION 

2.1. Meanpow 

The linear stability of solutions to the quasi-cylindrical equations of motion is considered. The 
quasi-cylindrical equations are derived from the laminar, incompressible, axisymmetric equations 
of motion as a result of boundary-layer type assumptions; that is, axial gradients are small 
compared to radial gradients (cf. Reference 13). The problem is parabolic in the streamwise 
direction and thus the equations may be solved by marching in z. The quasi-cylindrical equations 
were first solved by Hall” using finite-difference methods for several sets of initial and boundary 
conditions. 

The objective of the present study is to investigate the linear stability of a longitudinal vortex 
embedded in a zero pressure gradient free stream. To this end, initial conditions are derived from 
the far-wake similarity solution to the trailing line vortex.’ The circumferential and axial velocity 
profiles, respectively, are given as 
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where 1 and a are constants, and Wo represents the centreline axial velocity. 
As previously mentioned, the q-vortex has been employed in many previous stability studies. In 

the present study, the length scale ( I )  is chosen as the vortex core radius (the radius at which the 
swirl velocity is a maximum), and thus I =  1.1 22/Ja. The velocity scale is chosen as the far-field 
axial velocity, W, . The non-dimensional forms of (1) and (2) become 

7 (4) ,,,= 1 +~e-(I-122r) '  

where 4=Jal/l.122 W, and 6 =  WolWm. 
Due to different scaling parameters, the definitions of 4 and 6 here differ from those defined in 

previous studies of the q-vortex (cf. Reference 5). The radial boundary conditions are specified as 
w = 1 and v=u(ro), where ro represents the edge of the computational domain. The above 
equations are solved using standard second-order-accurate finite-difference approximations, 
marching in the streamwise direction. Grid resolutions used in the solution procedure were 
sufficient to ensure that the stability characteristics of the mean flow profiles are grid-indepen- 
dent. 

2.2. Stability equations 

expressing the linearized perturbation variables in the form 
Briefly, the stability equations are derived by first linearizing the equations of motion and then 

{u', v', w', p ' }  = (iF(r), G(r), H(r), P(r)}e''"+"e-"'). ( 5 )  
Here a is the real axial wavenumber, n is the real azimuthal wavenumber, and o is complex (thus, 
we are considering temporal stability). These equations, consisting of three second-order 
momentum e ~ a t i o n s  and the continuity equation, have previously been given in Reference 2 and 
may be expressed in the form 

(ADZ+BD+C) @=O, (6) 
where @ is a four-element vector defined by @ = { F ,  G ,  H ,  P}'. D = a/&, where r is the radial 
co-ordinate. The non-zero coefficients of 4 x 4 matrices A, B and C are given in the Appendix. The 
above equations are solved subject to the following boundary conditions (see Reference 17): 

at r=O, 

if n =0 ,  @l(0)=O,(O)=O, 03'(0)=0, (7) 

if n = f 1, @1(0)f@2(0)=0, m1'(0)=O, D3(0)=O, (8) 

if Inl> 1, @1(0)=@2(O)=03(O)=0, (9) 

The solution technique employed is based on a second-order-accurate finite-difference approx- 
imation on a staggered mesh. The staggered mesh eliminates the need for pressure boundary 
conditions. The scheme is analagous to that employed quite successfully in the compressib1.e 
boundary-layer stability code COSAL.". A brief description follows. 
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The radial co-ordinate, r,  is first mapped onto a computational domain 064 < 1 using the 
mapping 

where 1 </?< co. As 8-1, more points are clustered toward the vortex centreline. 

given as 
The second-order-accurate finite-difference representation of the stability equations is then 

where 8 has components Ok,j (k=  1, . . . , 4 )  and j = O  at the vortex centreline and j =  N at the 
radial boundary. In addition, dl = 1, d2 = O  for F, G, and H components of @; dl =0, d2 = 1 for the 
P component. 

The first-order continuity equation is represented as 

The term Y W & ~ +  denoting an artificial compressibility factor,20 is added to the continuity 
equation to make the coefficient matrix non-singular. When y is assigned a value of order 10- lo, 

the compressibility factor has no effect on the desired eigenvalues. The above equations, along 
with six boundary conditions, represent 4N + 3 equations for 4N + 3 unknowns. This system 
constitutes a generalized eigenvalue problem of the form 

i a  = Bo& , 

which is solved for the eigenvalues o using the IMSL QL routine CXLZ. The accuracy of the 
desired eigenvalue is improved by Richardson extrapolation." 

3. RESULTS 

The linear stability of solutions to the quasi-cylindrical equations are computed for both high and 
low swirl ratio cases. As a prelude to this presentation, it is noted that results were computed for 
a viscous mode of the q-vortex which has previously been published in the l i t e ra t~re .~  The main 
purpose of this was to verify the accuracy of the solution procedure. The mean flow profiles were 
given in analytic form as I/= q/r (  1 - epr2),  W =  W,/ Wo + e-" , U = 0, where W,/ Wo = 1 and 
q=O.4. In addition, the Reynolds number was taken as 2000 (based on scalings in Reference 4). 
The results of the finite-difference scheme agreed to eight decimals with the spectral scheme when 
a maximum of 120 points were used. This accuracy is clearly sufficient for the purposes of the 
present analysis. Thus, this resolution was used for the results presented in the remainder of the 
paper. (For preliminary searches, 60 points with no extrapolation was found to be sufficient.) 

Mean flows were computed as solutions to the quasi-cylindrical equations of motion. In the 
solution of these equations, 400 points were used in the radial direction, with a stretching function 
[equation (1  l)] employed to cluster points near the vortex core. The far-field boundary was set to 
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ro = 40 (i.e. 40 core radii as defined at the inflow plane). The radius was chosen large enough so 
that the zero perturbation radial boundary conditions required for the stability equations would 
be satisfied. A rather large number of points in the radial direction was necessary in order to 
provide sufficiently accurate radial derivative terms. 

The calculations were performed for both low and high swirl ratio cases. As expected, the low 
swirl ratio case (4 =0.4,6 = 1.0) provided stability results in good agreement with previous results 
appearing in the literature for both viscous and inviscid modes of the prototype q-vortex. The 
inclusion of the non-parallel terms in the stability analysis had only a mild destabilizing effect. 
Thus, these results are not discussed further. 

Conditions for the high swirl case were chosen in the range where vortex breakdown may be 
expected to occur. Specifically, 4 = 1.75 and 6 = 1.0. The Reynolds number at  inflow was taken as 
1000. The swirl and axial velocity profiles are shown in Figures 1 (a) and l(b), respectively, at axial 
locations z = 0,30,60 and 90. The numerical solution of quasi-cylindrical equations failed at 
z = 98.75. (The numerical procedure fails to converge, as first described by H a l l 3 )  Note that at 
z = 90, the centreline axial velocity has dropped below the free-stream axial velocity, while at the 
core edge ( r  % 1.5) the axial velocity exceeds the free-stream axial velocity. Thus, two inflection 
points exist in this profile. Shown in Figure l(c) are the maximum swirl velocity, centreline axial 
velocity and pressure, and swirl ratio as a function of axial distance. The most important 
difference between these results and those for the low swirl case concern the behaviour of the swirl 
ratio. Here the swirl ratio increases in the streamwise direction, from ~ 0 . 6 3  at inflow to = 1-1 at 
z=98, the point at which the solution procedure fails. Clearly, the assumptions used in the 
derivation of Batchelor’s solution are violated under these conditions. Although not shown, the 
swirl ratio decreases continuously for the low swirl case. Note that the increase is approximately 
linear for z < 75, and beyond this region begins to increase in an exponential manner. At failure, 
the swirl ratio is certainly in the range at which vortex breakdown is expected to occur. Thus, it is 
reasonable to assume that these profiles are characteristic of those leading to vortex breakdown. 
Of course, the form of vortex breakdown cannot be predicted due to the assumption of symmetry. 

The stability results are presented next. Growth rate results are presented in Figure 2(a) for the 
viscous axisymmetric (n=O)  mode at axial locations z=O, 30,60 and 90. The calculations shown 
in this figure include non-parallel mean flow terms. When the non-parallel effects are neglected, 
the modes shown in the figure exist, but are stable. As the figure indicates, the growth rates for 
OGz660 remain nearly constant, but at z=90 have increased by a factor of 2. The maximum 
growth rates occur for low values of wavenumber, indicating that these are long-wavelength 
instabilities. The results for n = 1 mode are shown in Figure 2(b), which again include non-parallel 
effects. Here the increase in growth rates at z = 90 occurs, although the increase is not so dramatic 
as it was for the n = O  mode. Also, the maximum growth rates occur for infinite wavelength 
disturbances (a = 0, where, strictly speaking, the quasi-parallel flow assumption is inapplicable, 
although may provide reasonable results). 

The results for the n = - 1 inviscid mode are shown in Figure 2(c). Here the instability appears 
only after the vortex has evolved some distance in the streamwise direction. The amplitude of the 
instability at  z=90 is comparable to the amplitude of the viscous modes at the same location. 
Again, the mode was stable when U and 8 W/az were set to zero. Thus, these non-zero compo- 
nents of the mean flow, which are driven by the interaction between the swirl and axial velocity, 
appear to become important at high swirl rates. 

It is proposed that the above disturbance modes may have an effect on the resultant form of 
vortex breakdown. That is, although they do not provide a mechanism for the initiation of 
breakdown, they may have an effect on the breakdown structure itself. Of course, confirmation 
of instability at these swirl levels must await a fully non-parallel stability formulation. 
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Figure 1 .  Meanflow solutions for high swirl case; cj= 1.75, 6 =  1.0, Re,= 1ooO: (a) swirl velocity profiles; (b) axial velocity 
profiles; (c) streamwise variations of V. W, P and K. 
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Figure 2. Growth rates at several axial locations: (a) viscous mode, n = O  (b) viscous mode n = 1; (c) inviscid mode, n = - I 
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4. CONCLUSIONS 

The linear stability of a quasi-cylindrical vortex evolving in the streamwise direction was 
investigated. The vortex was embedded in a uniform free stream, and thus evolved due to viscous 
effects alone. The mean flow profiles were computed as numerical solutions to the quasi- 
cylindrical equations of motion. The advantage of this procedure rests in its generality. That is, 
the requirements necessary for partial linearization of the quasi-cylindrical equations, as pre- 
dicted in Batchelor’s solution (from which the q-vortex is derived), may be relaxed. The stability 
results for the low swirl case were consistent with those found by others for analytic profiles given 
by the q-vortex, although this was not known a priori. For the high swirl case, no instability was 
detected when non-parallel terms in the mean flow profiles were absent. Based on previous 
studies of the q-vortex, this result was not unexpected (cf. Reference 12). When the non-parallel 
terms were included, viscous and inviscid instability was noted. The magnitude of the instability 
increased as the location of the point of failure of the numerical solution to the quasi-cylindrical 
equations was approached (to within z 9  core radii). This may have implications in important 
areas such as vortex breakdown. Of course, at this location, the quasi-parallel flow approxima- 
tion is suspect, and confirmation awaits results from a fully non-parallel formulation. 

Further work into the stability of these swirling flows is anticipated by the author. To fully 
account for non-parallel effects, a multiple-scale technique will be attempted. The stability of 
solutions to the quasi-cylindrical equations with imposed external pressure gradients will also be 
investigated. 
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APPENDIX 

The non-zero components of the 4 x 4  matrices A, B,  C are given as 

B(l , l )=i  U - -  , [ Rbr] 

B(1,4)= 1, 

1 
Re r’ 

B(2,2)=U-- 

1 
Re r’  

B(3,3)= U -- 
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B(4,l)  = 1 , 

i2n 2V 
C(1,2)=---, 

C(2,1)=1-+- +--, 

C(2,2)= 

C(2,4) = - , 

R e r 2  r 

.dV 2n iV 
dr  R e r 2  r 

r 

in 
r 

d W  
C(3,1)=i-, 

dr 

C(3,3)= 
r 

C(3,4)=ia 

1 
r 

n 
r 

C(4,1)=-, 

C(4,2) = - , 

C(4,3) =a.  
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